THE CARDINALITY OF MANIFOLD ATLASES

BY C. J. S. CLARKE

ABSTRACT

It is shown that any finite dimensional $C⁰$ manifold (connected and Hausdorff but otherwise unrestricted) has an atlas of cardinality not greater than that of the continuum; while if it has a Hölder continuous pseudo-Riemannian metric then there is a countable atlas.

1. Introduction and results

By a manifold (respectively, C^1 manifold) we shall mean a pair $M = (M, \mathcal{A})$, where M is a connected, Hausdorff topological space and the atlas $\mathcal{A} =$ $(U_i, p_i)_{i \in I}$ comprises an open cover $(U_i)_{i \in I}$ of unrestricted cardinality and injective coordinate maps $p_i: U_i \to \mathbb{R}^n$ (*n* fixed, finite) such that $\phi_{ii} := p_i p_i^{-1}$, where defined, is continuous (respectively C^1 with differential $D\phi_{ij}$). The equivalence of atlases is defined as usual, and we write

 $|\mathcal{M}| := \min\{k : \mathcal{M} \text{ has an equivalent atlas of cardinality } k\}.$

It is well-known that there exists a C^1 *M* with $|M| = c$ (where $c = 2^d = \text{card}(\mathbf{R})$; $d = \text{card}(\mathbf{Z})$ and that if M has a C^0 Riemannian structure or a C^1 pseudo-Riemannian structure then $|\mathcal{M}| \leq d$. Geroch [1] published the pseudo-Riemannian result for C^3 metrics; the simplest proof for C^1 metrics follows on noting (cf. Schmidt [2]) that a $C¹$ pseudo-Riemannian structure induces a C^0 -Riemannian structure on the frame bundle.

We shall formulate a more general condition under which $|M| \le d$ by defining *a para-linear structure* on $M = (M, \mathcal{A})$ to be a family $(\mathcal{A}_{\varepsilon})_{\varepsilon \in \mathbb{R}}$ of C¹ atlases equivalent to $\mathcal A$ such that if (U_i, p_i) and (U_i, p_j) belong to $\mathcal A_{\varepsilon}$, then there exists a linear map $L \in GL(n, \mathbb{R})$ with

$$
||L \circ D\phi_{ij}(x) - 1|| < \varepsilon \quad \text{for all } x \in p_j(U_i \cap U_j)
$$

(where $\|\cdot\|$ denotes the mapping norm). We shall prove the following.

Received March 9, 1982 and in revised form September 2, 1982

THEOREM. (i) For any manifold M , $|M| \leq c$. (ii) If M has a para-linear structure then $|M| \leq d$.

COROLLARY. If M has a $C^{1,\alpha}$ atlas and a $C^{0,\alpha}$ pseudo-Riemannian structur *then* $|M| \le d$, and so M is paracompact.

Here $C^{k,a}$ denotes functions with Hölder continuous k' th derivatives.

The main point of the paper is the reduced differentiability used in th corollary, which has useful applications to models in General Relativity contair ing impulse-waves. Part (i) of the theorem is included for completeness: thoug simple to prove and accepted folklore, the author has not found the result in th literature. The proof of (ii) owes much to Geroch [1].

2. Proof of Theorem (i)

We define by induction an increasing collection of submanifolds \mathcal{M}_{α} $(M_{\alpha}, \mathcal{A}_{\alpha})$ for ordinals α , showing that card $(\mathcal{A}_{\alpha}) \leq c$ for $\alpha \leq \Omega$ and that $M_{\Omega} = i$ (where Ω is the first uncountable ordinal).

Choose $\mathcal{M}_0 = (U_0, (U_0, p_0))$ for any $(U_0, p_0) \in \mathcal{A}$. If κ is a limit ordinal, the define $M_{\kappa} = (\bigcup_{\alpha \le \kappa} M_{\alpha}, \bigcup_{\alpha \le \kappa} \mathcal{A}_{\alpha})$. The inductive hypothesis "card(\mathcal{A}_{α}) $\le c$ for $\alpha < \kappa$ " then gives that card(\mathcal{A}_{κ}) $\leq c$ provided $\kappa \leq \Omega$.

For a successor ordinal $\beta + 1$, begin by defining \mathcal{A}^* to be the complete atterequivalent to \mathcal{A}_β . That is, $\mathcal{A}^*_{\beta} = \mathcal{A}_\beta \cup \mathcal{A}^*_{\beta}$ where \mathcal{A}^*_{β} is the set of all charts (U, Γ) with $U \subset M_\beta$ and pp_1^{-1} being a local homeomorphism (where defined) for a $p_i \in A_\beta$. The elements of A_β^{\dagger} are completely characterised by the functions *pp*. (regarded as \emptyset if the domain is empty) as j ranges over an index set for \mathcal{A}_β ; bu $card(\mathcal{A}_{\beta}) \leq c$ for $\beta < \Omega$ (inductive hypothesis) and the set of local homeomorphic functions from open sets of \mathbb{R}^n into \mathbb{R}^n has cardinality c; hence the functions pp_i^{-1} form a set of cardinality c and card(\mathcal{A}_{β}^*) = c.

Let \mathcal{A}^* be the complete atlas equivalent to \mathcal{A} . For each $(U, p) \in \mathcal{A}_{\beta}^*$, s $j(U, p)$ to be any pair $(U', p') \in \mathcal{A}^*$ with $\overline{U} \subset U'$ and $U' \not\subset M_\beta$, with $p' | U = p$, such a pair exists; otherwise define $j(U, p) = (U, p)$. Finally, s $\mathcal{A}_{\beta+1}:=\{j(U,p):(U,p)\in\mathcal{A}_{\beta}^*\}\$ and $M_{\beta+1}:=\bigcup_{(U,p)\in\mathcal{A}_{\beta}^*}U'$, $\mathcal{M}_{\beta+1}:=(M_{\beta+1},\mathcal{A}_{\beta+1})$ This gives card $(\mathcal{A}_{\beta+1}) = \text{card}(\mathcal{A}_{\beta}^*) = c$, by induction, for $\beta < \Omega$.

To show that $M_0 = M$, suppose the contrary. Then, since M is connected ar M_{Ω} is open, there is an $x \in M_{\Omega} \backslash M_{\Omega}$ and some $(U, p) \in \mathcal{A}$ with $x \in U$. The s $p(U \cap M_0) \subset \mathbb{R}^n$ can be covered by an increasing countable collection $(V_i)_{i \in \omega}$. open sets with compact closures $\overline{V}_1 \subset V_{i+1}$. But $M_{\Omega} = \bigcup_{\alpha \leq \Omega} M_{\alpha}$ and so 1 compactness there exist ordinals $\alpha_i < \Omega$ ($i \in \omega$) such that each $V_i \subset p(U \cap M_{\alpha_i})$ Let $\beta = \bigcup_{i \in \omega} \alpha_i$. Then card(β) = d and so $\beta < \Omega$. Since $V_i \subset p(U \cap M_{\beta})$ for an

i, $U \cap M_\beta = U \cap M_\alpha$. But now $p \mid U \cap M_\beta$ is a coordinate map on M_β and thus the pair $W = (U \cap M, p \mid U \cap M_\beta)$ is in \mathcal{A}^*_β . So the chart $j(W) = (U', p')$ has $x \in \overline{U \cap M_{\beta}} \subset U'$ (by construction of j) and so $x \in M_{\beta+1} \subset M_{\Omega}$, a contradiction.

3. Proof of Theorem (ii)

Let \mathcal{A}_{s}^{*} be the atlas obtained by adjoining to \mathcal{A}_{s} all charts of the form (U', p') , where $p' = L \circ (p | U') + a$ for any $(U, p) \in \mathcal{A}_\epsilon$ and $U' \subset U$, $L \in GL(n, \mathbb{R})$, $a \in \mathbb{R}^n$. Clearly $(\mathcal{A}_{\varepsilon}^*)_{\varepsilon \in \mathbb{R}}$ is still a para-linear structure. Let \tilde{f}_{ε} be the frame $(\partial/\partial x^r)_{r=1}^n$ at $\xi \in \mathbb{R}^n$, and suppose f is some frame on M. Then by "an \mathcal{A}_{ξ}^* r-ball about f" we mean a triple (U, f, p) , where $(U, p) \in \mathcal{A}_{\varepsilon}^*$, $p_* f = \overline{f}_0$ and $p(U)$ = $\{\xi \in \mathbb{R}^n : |\xi| < r\}.$ Choose countable dense sets $(z_i)_{i \in \omega}$ and $(l_i)_{i \in \omega}$ in the unit *n*-ball ({ $\xi \in \mathbb{R}^n : |\xi| < 1$ }) and in GL(*n*, **R**), respectively. Let *l*,f for any frame $f = (f, \dots, f)$ be the frame $((l_i)_i, f_1, \dots, (l_i)_n, f)$. If $\mathcal{B} = (U, f, p)$ is an *r*-ball, define $X_{\mathcal{B}}$ as the set $\{p_x^{-1}(l,\tilde{f}_z): i,j \in \omega\}$.

As in the proof of (i) we define a sequence of submanifolds $\mathcal{M}_{\alpha} = (M_{\alpha}, \mathcal{A}_{\alpha})$ for ordinals $\alpha \leq \omega$, where $\mathcal{A}_{\alpha} = \{(U, p) \in \mathcal{A}^*: U \subset M_{\alpha}\}\)$, and ε is fixed at a sufficiently small value ($\varepsilon = 1/7$ will do). Each \mathcal{M}_{α} will be furnished with a countable dense set X_{α} of frames (i.e. X_{α} is dense in the frame bundle of \mathcal{M}_{α}).

To start, M_0 is taken to be any U for which there exists an $\mathcal{A}_{\varepsilon}^*$ r-ball $\mathscr{B} = (U, f, p); X_0$ is defined as $X_{\mathscr{B}}$.

For a limit ordinal κ , $M_{\kappa} = \bigcup_{\gamma \leq \kappa} M_{\gamma}$ and $X_{\kappa} = \bigcup_{\gamma \leq \kappa} X_{\gamma}$ (though only the case $\kappa = \omega$ will concern us).

For a successor ordinal $\beta + 1$, proceed as follows. For any frame f on M define $\rho(f) = \min(1, \frac{1}{2} \sup \{r : \exists \text{ an } \mathcal{A}^* \text{ r-ball about } f\})$. Now, for each $f \in X_\beta$, choose an $\mathcal{A}_{\varepsilon}^*$ $\rho(f)$ -ball $\mathcal{B}(f) = (U_f, f, p_f)$ and set

$$
M_{\beta+1}:=\bigcup_{f\in X_{\beta}}U_f,\quad X_{\beta+1}:=\bigcup_{f\in X_{\beta}}X_{\mathscr{B}(f)}.
$$

We now show that $M_{\omega} = M$, by a method similar to that used for (i). Suppose not, and take $x_0 \in \overline{M}_{\omega} \setminus M_{\omega}$. Choose some chart $(U, p) \in \mathcal{A}_{\epsilon}$ with $x_0 \in U$ and a sequence $(f_i)_{i \in \omega}$ with $f_i \in X_\omega$ and $\pi f_i \to x_0$ (where $\pi : LM \to M$ is the projection of the frame bundle). Since each $f \in X_{\omega}$ belongs to a family (obtained by varying i in the definition of $X_{\mathcal{B}}$) which is dense in the fibre containing f, we can choose other members f'_1 of the families containing the f_i so that $\pi f'_i = \pi f_i \rightarrow x_0$ and

$$
(1) \t\t\t\t||f'-1|| < \varepsilon
$$

where f'_i is the matrix of components of the members of f_i with respect to the coordinates p.

Set $R = min\{1, inf\{|\xi - p(x_0)| : \xi \in \mathbb{R}^n \setminus p(U)\}\}$; and choose i_1 so large that

(2)
$$
|p(x_1) - p(x_0)| < R/40
$$

(where $x_1 = \pi f_0$) and so that $p(x_1)$ can be joined to $p(x_0)$ by a straight line in $p(U)$. Set f for f'_{i} , f for f'_{i} .

If we define $p'(x) = f^{-1}(p(x)-p(x_1))$ then

$$
|p'(x)| < R/4 \Rightarrow |p(x)-p(x_1)| \leq ||f|| ||R/4 \leq R/2
$$

(provided ε < 1)

$$
\Rightarrow |p(x)-p(x_0)| \leq R \qquad \text{(from (2))}.
$$

It follows that U contains the $\mathcal{A}_{\varepsilon}^* R/4$ -ball (B', f, p') , where $B' = p'^{-1}{x : |x|}$ $R/4$, so that, by definition of ρ ,

$$
\rho(f) > R/8.
$$

Certainly $x_1 \in M_\alpha$ for some $\alpha < \omega$; so consider the $\rho(f)$ -ball (B'', f, p'') used in the definition of $M_{\alpha+1}$. Let $\xi : [0, 1] \to \mathbb{R}^n$ be the line $\xi(\lambda) = (1 - \lambda)p(x_1) + \lambda p(x_0)$ from x_1 to x_0 . Then $p^{-1}\xi(\lambda)$ lies in B" for small enough λ and (since $x_0 \notin M_{\alpha+1}$) leaves B["] for the first time at some $\lambda_1 < 1$. Noting that $p''\xi(0) = 0$, we have

$$
|p'p^{-1}\xi(1)| < \int_0^{\lambda} \left| \frac{d}{d\lambda} (p''p^{-1}\xi(\lambda)) \right| d\lambda \quad \text{for } \lambda < \lambda,
$$

$$
< \int_0^{\lambda} \| D\phi(\xi(\lambda)) \| d\lambda . |p(x_0) - p(x_1)|
$$

where $\phi = p'' \circ p^{-1}$, i.e.

(4) $|p''p^{-1}\xi(\lambda)| < \lambda ||L^{-1}||(1+\varepsilon)||p(x_0)-p(x_1)| < 2||L^{-1}||R/40$

from (2), provided $\varepsilon < 1$ and $L \in GL(n, \mathbb{R})$ is such that $||LD\phi - 1|| < \varepsilon$. Such an L exists since p and p'' are coordinate maps of charts in $\mathcal{A}_{\varepsilon}^*$.

Now $p''_+ f = \tilde{f}_0$ and $p_+ f = f \tilde{f}_0$. Hence at the point $p(x_0)$ we have $D\phi =$ $D(p'' \circ p^{-1}) = f^{-1}$. But $||LD\phi - 1|| < \varepsilon$, by the choice of L, so that using (1) simple estimation procedure gives $||L-1|| < 7\varepsilon/2$ provided $\varepsilon < 1/4$ and s $||L^{-1}|| \leq 2$ provided $\varepsilon < 1/7$. Thus (4) gives $|p''p^{-1}\xi(\lambda)| \leq R/10$. But, at λ $p^{-1}\xi(\lambda)$ leaves the ball B" of coordinate (p") radius at least *R*/8 (from (3)), i.e. $|p''p^{-1}\xi(\lambda_1)| > R/8$, a contradiction.

4. Proof of Corollary

LEMMA. Let $B_t = \{ \xi \in \mathbb{R}^n : |\xi| < t \}$ and let U be a connected open set in \mathbb{R}^n *containing* \bar{B}_r for some τ , $0 < \tau < 1$. Let $x' : U \to \mathbb{R}^n$ be a $C^{1,\alpha}$ diffeomorphism $(0 < \alpha < 1)$ with $Dx'(0) = 1$. Let there be given a $C^{0,\alpha}$ pseudo-Riemannian metric *on U with a matrix of components g with respect to natural coordinates and g' with respect to coordinates induced by x' (viz.* $x'^*(g'_n(x'(\xi))dx^i \otimes dx^j) =$ $g_{ii}(\xi)dx^i \otimes dx^j$). Let β be any real number $0 < \beta < \alpha$. Suppose $||g(x_1) - g(x_2)||$ $\bar{\varepsilon}|x_1-x_2|^{\beta}$ and $||g'(x_1)-g'(x_2)|| < \bar{\varepsilon}|x_1'-x_2'|^{\beta}$ for all $x_1, x_2 \in B_r$ and $x'_1, x'_2 \in x'(B_n)$. Then for all $\varepsilon > 0$ there is a number ε_0 , depending only on α , β , ε *and n, such that, if* $\bar{\varepsilon} < \varepsilon_0$ *, then* $||Dx' - 1|| < \varepsilon$ in $B_{\tau/2}$ *.*

PROOF OF LEMMA. Write L for $(Dx')^{-1}$. Let $L_A = L(x_A)$, $g_A = g(x_A)$, $g_A' =$ $g'(x'_A)$ $(A = 1,2)$, where $x_1, x_2 \in B_{\tau'}$ $(\tau' < \tau)$, and $x'_A = x'(x_A)$. Then direct calculation gives

(5)
$$
L_2^T(g_1 - g_2)L_2 + (g'_2 - g'_1) = \Lambda^T g'_1 + g'_1 \Lambda + \Lambda^T g'_1 \Lambda
$$

with $\Lambda = L_1^{-1}(L_2 - L_1)$ and ^T denoting matrix transpose. For small enough τ' (a restriction to be removed at the end of the proof), since $L \in C^{0,\alpha}$ and $L(0) = 1$ we can ensure that $||L_A - 1|| \le \frac{1}{2}$, $||\Lambda|| \le \sqrt{\bar{\varepsilon}} \bar{\delta}^{\beta/2}$ (where $\bar{\delta} = |x_1 - x_2|$). In that case $|x_1' - x_2'| < 2\overline{\delta}$, and taking norms in (5) gives

$$
|\Lambda^{\mathrm{T}}g_1' + g_1'\Lambda| \leq 8\bar{\epsilon}\delta^{\beta}
$$

(where $|A|$ for a matrix A denotes max $|A|$).

Now choose a C^* function $\chi : \mathbb{R}^n \to \mathbb{R}$ with support in B_1 such that $\int \chi d^n x = 1$ and set

$$
\psi_j(y) = \int_U \delta^{-n} \chi\left(\frac{x-y}{\delta}\right) L'_j(x) d^n x
$$

(where $\delta > 0$ is to be determined shortly). Then

$$
C_{ijk}:=L_n^mg_{mn}\psi_{j,k}^n=-\delta^{-(n+1)}\int_U\chi_{,k}(g'(x'(\xi))\Lambda)_yd^k\xi
$$

from which (6) gives

$$
|C_{(q)k}| \leq 4\kappa \bar{\epsilon} \delta^{\beta-1}
$$

where

$$
\kappa = \max_{i} \int |\chi_{,i}(\xi)| d^{n} \xi
$$
 and $C_{(ij)k} = \frac{1}{2}(C_{ijk} + C_{jik}).$

The definition of ψ can be rewritten (integrating by parts) to yield

$$
\psi_{j,k}^{\mathfrak{r}}=\delta^{-(n+1)}\int_{U}\chi_{,kj}x^{\prime\prime}d^{n}x
$$

whence symmetry on j and k gives us $C_{ijk} = C_{ikj}$. Consequently

$$
C_{ijk} = C_{(ik)j} - C_{(kj)i} + C_{(ji)k}
$$

and so from (7)

$$
|C_{ijk}| \leq 12k\bar{\varepsilon}\delta^{\beta-1}
$$

and hence, from the definition of C,

$$
|\psi_{j,k}|\leq 48\kappa\bar{\varepsilon}\delta^{\beta-1}.
$$

The Hölder condition on L gives us, within $B_{\tau/2}$, that

(9)
$$
|L(y) - \psi(y)| \leq K_{(\alpha)} \delta^{\alpha}
$$

where

(10)
$$
K(\alpha) \geq \sup\{|L_1 - L_2| \, |x_1 - x_2|^{-\alpha} : x_1, x_2 \in B_{\tau'}, x_1 \neq x_2\}
$$

provided $\delta < \tau'/2$; thus, combining (9) and (8) gives

(11)
$$
|L_1 - L_2| \leq 2K(\alpha)\delta^{\alpha} + K' s \delta^{\beta - 1}
$$

where

$$
K' = 48\kappa\bar{\varepsilon}, \qquad s = |x_1 - x_2|.
$$

We now choose δ so as to minimise the right-hand side of (11), viz.

$$
\delta = \left[\frac{(1-\beta)K's}{2\alpha K(\alpha)}\right]^{1/(\alpha-\beta+1)}
$$

which satisfies $\delta < \tau'/2$ for small enough $\bar{\varepsilon}$ (and so small enough K'), given tha $s < \tau' < 1$ and $K(\alpha)$ can be taken greater than unity. Substituting in (11) gives

(12)
$$
|L_1 - L_2| \leq (K' s)^{o(\alpha)} K(\alpha)^{\sigma(\alpha)} J_{\alpha,\beta}
$$

where

$$
\rho(\alpha) = \alpha/(\alpha - \beta + 1), \qquad \sigma(\alpha) = (1 - \beta)/(\alpha - \beta + 1) \qquad \text{and}
$$

$$
J_{\alpha,\beta} = \left[2\left(\frac{1 - \beta}{2\alpha}\right)^{\rho(\alpha)} + \left(\frac{2\alpha}{1 - \beta}\right)^{\sigma(\alpha)}\right].
$$

Equation (12) expresses a Hölder condition on L with exponent $\rho(\alpha)$. This enables us to base an iterative procedure on equations (12) and (10): the condition (12) allows us to compute a value for $K(\rho(\alpha))$ by using equality in (10); we then replace α by $\rho(\alpha)$ in (12) to give a Hölder condition with exponent $\rho(\rho(\alpha))$, and so on. The successive Hölder exponents are thus given by the recurrence relation

$$
\alpha_n = \rho(\alpha_{n-1}) \qquad (n = 1, 2, \cdots),
$$

$$
\alpha_0 = \alpha
$$

with solution $\alpha_n = \alpha \beta / [(\beta - \alpha)(1 - \beta)^n + \alpha]$. This function decreases monotonically to β as $n \to \infty$, although the iterative process is only admissible so long as $\delta < \tau'/2$ is maintained.

The relations (12) and (10) give, by this method,

$$
K(\alpha_n)=\eta_{\alpha_n}(K(\alpha_{n-1}))^{\sigma(\alpha_{n-1})}, \qquad \eta_{\alpha}=J(\alpha,\beta)K^{\prime\rho(\alpha)}.
$$

Since, as may easily be verified, $\Pi \sigma(\alpha_n)$ diverges to zero while $J(\alpha, \beta)$ tends to $J(\beta, \beta)$, this implies that $K(\alpha_n) \to 0$ provided $\bar{\varepsilon}$ is small enough to make $\eta_{\alpha} < 1$ for all α_n .

We perform the iteration, reducing $K(\alpha_n)$ until the condition $\delta < \tau'/2$ is violated, at which point

$$
K(\alpha_n) \leq \frac{(1-\beta)K'}{4\alpha(\tau'/2)^{\alpha_n-\beta}}.
$$

We can now choose $\bar{\varepsilon}$ small enough so that $K(\alpha_n)\tau^{\alpha_n}$ will be less than 1/2 for all τ' < 1, and so that $K(\alpha_n)\tau'^{\alpha_n-\beta}$ is less than $\sqrt{\overline{\epsilon}}$. This means that the procedure will be valid for all $\tau' < \tau < 1$, as required.

Thus we derive a Hölder condition with exponent β on L in B_r with constant depending only on α , and which can be made arbitrarily small by choice of $\bar{\varepsilon}$. The result then follows.

PROOF OF COROLLARY, CONTINUED. The construction of an atlas providing a para-linear structure for M is now immediate: the Hölder condition on the metric ensures that, for any point $x \in M$, we can choose a neighbourhood U of x and a coordinate map such that the coordinate-image satisfies the conditions of the Lemma. Restricting U down to $p^{-1}(B\tau/2)$ then gives a chart, the collection of all such charts providing (according to the Lemma) the required para-linear structure. Part (ii) of the theorem now establishes the corollary.

16 C. J. S. CLARKE Isr. J. Mat

REFERENCES

1. R. P. Geroch, *Spinor structure of space-times in General Relativity I*, J. Math. Phys. 9 (1968) 1739-1744.

2. B. G. Schmidt, *A new definition of singular points in General Relativity*, Gen. Relativ. Gravi 1 (1971), 269-280.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YORK HESLINGTON, YORK YO1 5DD, ENGLAND