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THE CARDINALITY OF MANIFOLD ATLASES 

BY 

C. J. S. CLARKE 

ABSTRACT 

It is shown that any finite dimensional C o manifold (connected and Hausdorff 
but otherwise unrestricted) has an atlas of cardinality not greater than that of 
the continuum; while if it has a HOlder continuous pseudo-Riemannian metric 
then there is a countable atlas. 

1. Introduction and results 

By a manifold (respectively, C 1 manifold) we shall mean a pair  ~ = (M, ~ ) ,  

where M is a connected, Hausdorff  topological space and the atlas M = 

(U,,p,),~t comprises an open cover (U,),~I of unrestricted cardinality and 

injective coordinate maps p , :U,- - -~R n (n fixed, finite) such that cko:=p,p[ 1, 
where defined, is continuous (respectively C 1 with differential D~b,j). The 

equivalence of atlases is defined as usual, and we write 

IM 1:= min{k : M has an equivalent atlas of cardinality k}. 

It is well-known that there exists a C 1 eg with I M l = c  (where 

c = 2 ~ = card(R); d = card(Z)) and that if M has a C o Riemannian structure or a 

C 1 pseudo-Riemannian structure then IMI----d. Geroch [1] published the 

pseudo-Riemannian  result for C 3 metrics; the simplest proof  for C 1 metrics 

follows on noting (cf. Schmidt [2]) that a C 1 pseudo-Riemannian structure 

induces a C~ structure on the frame bundle. 

We shall formulate a more general condition under which I./A I --< d by defining 

a para-linear structure on M = (M,M)  to be a family (M~),~l~ of C ~ atlases 

equivalent to :g such that if (U, ,p,)  and (Uj,pj)  belong to ~ , ,  then there exists a 

linear map L ~ GL(n,  R) with 

IlL oD~b,,(x)-111< e for all x Ep j (U ,  fq U~) 

(where II II denotes the mapping norm). We shall prove the following. 
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THEOREM. (i) For any manifold ~ ,  I ~  t <= c. 
(ii) If ~ has a para-linear structure then [~t [<= d. 

COROLLARY. If ~ has a C L'~ atlas and a C ~ pseudo-Riemannian structur 
then [ ~t [ ~ d, and so M is paracompacr 

Here C k'~ denotes functions with HSlder continuous k 'th derivatives. 

The main point of the paper is the reduced differentiability used in th 

corollary, which has useful applications to models in General Relativity contair 

ing impulse-waves. Part (i) of the theorem is included for completeness: thoug 

simple to prove and accepted folklore, the author has not found the result in th 

literature. The proof of (ii) owes much to Geroch [1]. 

2. Proof of Theorem (i) 

We define by induction an increasing collection of submanifolds M~ 

(M~, ~r for ordinals a, showing that card(do) ___< c for a --- ~q and that Mo = i 

(where f~ is the first uncountable ordinal). 

Choose M0 = (U o, (U0, p0)) for any (U0, p0)~ M. If K is a limit ordinal, the 

define ~t. = ( U ~ <. Me, U~ <. M~ ). The inductive hypothesis "card(Ms) =< c fc 

a < K" then gives that card(M.) =< c provided K =< fL 

For a successor ordinal/3 + t, begin by defining M ~ to be the complete att~ 

equivalent to Ma. That is, M~ = M~ U M~ where M~ is the set of all charts (U,f  

with U C Ma and p p l  1 being a local homeomorphism (where defined) for a 

pj E Ma. The elements of M~ are completely characterised by the functions pp. 
(regarded as Q if the domain is empty) as j ranges over an index set for M~ ; bl 

card(M~)_--<c for /3 < I )  (inductive hypothesis) and the set of local 

homeomorphic functions from open sets of R" into R" has cardinality c ; henr 

the functions pp?~ form a set of cardinality c and card(M~) = c. 

Let M* be the complete atlas equivalent to M. For each (U,p)EM*~, s- 

j (U, p)  to be any pair (U',  p ')  E M * with O C U' and U' ~ M~, with p '  t U = p, 

such a pair exists; otherwise define j (U ,p )=(U,p) .  Finally, s 
M~+~:={j(U,p):(U,p)~M~} and M~+l:=U(u,p)esg;U', ~a.~:=(M~+~,M~+ 

This gives card(Mo+0 = card(M~) = c, by induction, for/3 < fL 
To show that M ,  = M, suppose the contrary. Then, since M is connected ar 

M ,  is open, there is an x E M n \ M ,  and some (U,p)Esg  with x E U. The s 

p (U fq M, )  C R" can be covered by an increasing countable collection (V,), e.o �9 

open sets with compact closures Q, C V,+~. But M , =  U~<oM~ and so ) 

compactness there exist ordinals a, < ~ (i ~ to) such that each V, C p(U fq M,, 
Let/3 = U , ~ a , .  Then card(/3) = d and so/3 < 11. Since V~ C p(U tq M~) for .: 
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i, U M M~ = U M Ma. But now p [ U ('1 M~ is a coordinate map on Mo and thus 

the pair W -- (U  M M,p I U r M~) is in ~ .  So the chart j ( W )  = (U ' , p ' )  has 

x E U M Mo C U'  (by construction of j )  and so x E Mo+~ C M , ,  a contradiction. 

3. Proof of Theorem (ii) 

Let ~r be the atlas obtained by adjoining to ~4, all charts of the form (U' ,  p'), 

where p ' = L o ( p l U ' ) + a  for any ( U , p ) ~  and U ' C U ,  L ~ G L ( n , R ) ,  

a E R". Clearly ( ~ * ) , ~ .  is still a para-linear structure. Let  fe be the frame 

(a/Oxr)7=l at s c ER" ,  and suppose f is some frame on AA. Then by "an sg* r-ball 

about f "  we mean a triple (U,f,p), where ( U , p ) ~  ~r p . f  =fo  and p ( U ) =  

{ ~ E R "  :lscl< r}. Choose countable dense sets (z , ) ,~  and ( l , ) ,~ in the unit 

n-ball ({~: E R" : I~:l < 1}) and in GL(n,R),  respectively. Let l,f for any frame 

f = ( f , . . - , f )  be the frame ((l,),%... ,(l ,) ,sf).  If ~ = (U,f,p) is an r-ball, define X~ 
I n _ s s 

as the set {p;'(l,L,): i,j coo}. 
As in the proof of (i) we define a sequence of submanifolds Ms = (M~, Me ) for 

ordinals a _-<~o, where ~r ={(U,p)E~4*:UCM,},  and e is fixed at a suffi- 

ciently small value (e = 1/7 will do). Each M~ will be furnished with a countable 

dense set X~ of frames (i.e. X~ is dense in the frame bundle of A(~). 

To start, M0 is taken to be any U for which there exists an M* r-ball 

= (U, f ,p ) ;  X0 is defined as X~. 

Fx)r a limit ordinal K, M, = U~<~M~ and X, = U~<,X~ (though only the case 

K = ~o will concern us). 

For a successor ordinal/3 + 1, proceed as follows. For any frame f on A/define 

p( f )  = min(1,�89 :3 an sO* r-ball about f}). Now, for each f ~X~ ,  choose 

an ~4" p(f)-ball ~ ( f ) =  (Ut, f, pt) and set 

Mo., := U /_/i, Xa+, := U X~u). 
fEx~ f~x~ 

We now show that M~ = M, by a method similar to that used for (i). Suppose 

not, and take Xo E/17/o, \ M,,. Choose some chart (U, p ) E  s4~ with xo E U and a 

sequence ~),~,~ with f, ~ X~ and zrf, --~ x0 (where zr : LM --~ M is the projection 

of the frame bundle). Since each f E Xo, belongs to a family (obtained by varying 

i in the definition of X~) which is dense in the fibre containing f, we can choose 

other  members f', of the families containing the f, so that zrf', = 7rf, --> x0 and 

(1) I I f : -  11I < 

where f', is the matrix of components  of the members of f, with respect to the 

coordinates p. 
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Set R = min{1,inf{l~:-p(x0)l : ~ ~ R  ~ \p(U)}}; and choose il so large that 

(2) I p (xl) - p (x0) l < R/40 

(where Xl = ~'f,,) and so that p(xO can be joined to p(xo) by a straight line ir 

p(U). Set f for ~',, f for/,'~. 
If we define p'(x)= f-~(p(x)-p(xl)) then 

Ip,(x)l < R/4 ~ Ip(x)-p(Xl)l ~ IlfllR/4~ R/2 

(provided e < 1) 

�9 Ip(x)-p(xo)l<=R (from (2)). 

It follows that U contains the ~t*~ R/4-ball (B',f,p'), where B ' =  p'-l{x :Ix I< 

R/4}, so that, by definition of P, 

(3) P (f) > R/8.  

Certainly xl ~ M~ for some a < to; so consider the p(f)-ball (B",f,p") used ir 

the definition of M~+1. Let r :[0, 1]--~ R n be the line r ) = (1 - A)p (x l )+ Ap (Xol 

from xl to Xo. Then p-l~:(~t) lies in B" for small enough ;t and (since x0 ~ M~+ll 

leaves B" for the first time at some ;tl < 1. Noting that p"l~(O)= O, we have 

d (p,,p_lr dA for A < a l  Ip'p-l,(l)l< foA l-~ 

< fo ~ II O4, (r dA. I P (Xo) - p (xl)l 

where th = p"~ -1, i.e. 

(4) Ip"p-lr < A ILL-111(1 + e)[p(xo)- p(xl)[ < 211L-1[[R/40 

from (2), provided e < 1 and L E GL(n, R) is such that l[ LDcb - 1 II < ~. Such a~ 

L exists since p and p" are coordinate maps of charts in .d*.  

Now p,f=fo and p.f=ffo. Hence at the point p(xo) we have D~b 
O(p"op-1)=f -'. But liED4,-111< ~, by the choice of L, so that using (1) 

simple estimation procedure gives I I L - 1 l l < 7 e / 2  provided e < 1 / 4  and s, 

IIL-111~2 provided e <1/7 .  Thus (4) gives Ip"p-lr But, at A 
p-l~:()t) leaves the ball B" of coordinate (p") radius at least R/8 (from (3)), i.e 

]p"p- 'r  > R/8, a contradiction. 
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4. Proof of Corollary 

LEMMA. Let B, = {~ E R" : [~ [ < t} and let U be a connected open set in R" 

containing B~ for some ~, 0 <  ~-<: 1. Let x '  : U->R"  be a C ~'~ diffeomorphism 

(0 < a < 1) with Dx'(O) = 1.  Let there be given a C ~ pseudo-Riemannian metric 

on U with a matrix of components g with respect to natural coordinates and g' with 

respect to coordinates induced by x' (viz. x '* (g ,~(x ' (~) )dx '~dx ' )  = 

go( ~ )dx' @ dxJ). Let fl be any real number 0 <  fl < a, Suppose II g (x , ) -g  (x2)ll< 
f l x t - x z [  ~ and [ [ g ' ( x ( ) - g ' ( x ' O t t < f [ x ( - x ~ l  ~ for all x , , x z E B ~  and 

x;, x~ E x'(B,).  Then for all e > 0 there is a number eo, depending only on a, [3, e 

and n, such that, if f < eo, then II Dx' - 111 < e in B,/2. 

PROOF OF LEMMA. Write L for (Dx') -1. Let LA = L ( X A ) ,  gA = g(XA) ,  g~, = 

g'(xJ,) (A = 1,2), where Xl, XaEB,,  ( z ' <  r), and x~,= X'(XA). Then direct 
calculation gives 

(5) L ~(gl - g2)L2 + (g~ - g~) = ArgI + gIA + Aa-g ~A 

with A = L?I(L2-  L~) and ~ denoting matrix transpose. For small enough ~-' (a 

restriction to be removed at the end of the proof), since L ~ C ~ and L (0) = 1 

we can ensure that Ilz  - 111 < �89 IIAII < x /~g  ~'= (where g = [x~ - x2l). In that case 
Ix[ - x~'l < 2g, and taking norms in (5) gives 

(6) [ATgI + gIA[ _-< 8f~ ~ 

(where IA] for a matrix A denotes maxlA;[ ). 

Now choose a C | function X :R" --*R with support in BI such that f x d " x  = 1 
and set 

(where 8 > 0 is to be determined shortly). Then 

m n ( I I n C v,: = L, g,,,.~i,k = - <5-(n+1) JV X.k (g (X ( ~ ) ) A ) , f l  ~: 

from which (6) gives 

(7) 

where 

[G,,* [ ~ 4KE8 "- '  

K = m , a x f  IX.,(~)Id"~ and Coj)k =�89 +C,,k). 
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The definition of 0 can be rewritten (integrating by parts) to yield 

1 YU I t  r l  I~l,k = 8 -(n+l) X,klX d x 

whence symmetry on j and k gives us C,j~ = C, kj. Consequently 

q ~  = C(,~), - C(~1), + C. , )~ 

and so from (7) 

[C~lk [ =< 12kgS~ -1 

(9) 

where 

(10) 

and hence, from the definition of C, 

(8) I O;.kl =< 48Kg6 ~-'. 

The H61der condition on L gives us, within B,,m that 

IL(y)- O(y)[--- K(.)8" 

K(a)>- s u p { [ L , -  Lz[ ] x , -  x2[-" : x , , x2E  B. , ,x ,  yt x2} 

provided 8 < r thus, combining (9) and (8) gives 

(11) [L, - L2 [ <--_ 2K (a)6 ~ + K's6 ~-' 

where 

K '  = 48Kg, s = [ x , - x 2 ] .  

We now choose 8 so as to minimise the right-hand side of (11), viz. 

= [ ( 1 - / 3 ) K ' s ]  "~-"§ 
6 [ 2aK(a)  J 

which satisfies 6 < ~-'/2 for small enough i (and so small enough K'), given tha 

s < ~" < 1 and K ( a )  can be taken greater than unity. Substituting in (11) gives 

(12) [L, - L21 <- (K's)P'")K(a y'~)J.,~ 

where 

p ( a ) = a / ( a - [ 3 + l ) ,  o , ( a ) = ( 1 - [ 3 ) / ( a - [ 3 + l )  and 

[ \ 2a ] \ 1 - / 3 /  J " 
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Equation (12) expresses a H61der condition on L with exponent p(ot). This 

enables us to base an iterative procedure on equations (12) and (10): the 

condition (12) allows us to compute a value for K(p (a)) by using equality in (10); 

we then replace a by p(a)  in (12) to give a H61der condition with exponent 

p(p(a)) ,  and so on. The successive H61der exponents are thus given by the 

recurrence relation 

a .  = p(a . - , )  (n = 1 ,2 , . . - ) ,  

~ 0 = a  

with solution a ,  = a18/[(t8 - a)(1 - 18)" + a] .  This function decreases monotoni- 

cally to 18 as n --~ 0% although the iterative process is only admissible so long as 

6 < ~"/2 is maintained. 

The relations (12) and (10) give, by this method, 

K(oe.) = rl,," (K(ot._,)) "'.-'), rh, = J(a, 18)K '~176 

Since, as may easily be verified, II o '(a.)  diverges to zero while J(a, 18) tends to 

J(18,18), this implies that K(a.)--+O provided g is small enough to make rt~ < 1 
for all a . .  

We perform the iteration, reducing K ( a . )  until the condition 6 < r'/2 is 
violated, at which point 

< ( 1 -  f l )K '  
K ( a . )  = 4a (r'/2) "--~ " 

We can now choose g small enough so that K(ot,)r  '"- will be less than 1/2 for all 

w' < 1, and so that K(a,)~ -'~'.-~ is less than V~. This means that the procedure 
will be valid for all ~"< ~-< 1, as required. 

Thus we derive a H61der condition with exponent/3 on L in B, with constant 

depending only on a, and which can be made arbitrarily small by choice of g. The 
result then follows. 

PROOF OF COROLLARY, CONTINUED. The construction of an atlas providing a 

para-linear structure for M is now immediate: the H61der condition on the 

metric ensures that, for any point x ~ M, we can choose a neighbourhood U of x 

and a coordinate map such that the coordinate-image satisfies the conditions of 

the Lemma. Restricting U down to p-l(Bz'/2) then gives a chart, the collection 

of all such charts providing (according to the Lemma) the required para-linear 

structure. Part (ii) of the theorem now establishes the corollary. 
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